Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

2,4,6-Trimethylphenol

Ziemer and Surygina

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

 \bigcirc 2000 International Union of Crystallography • Printed in Great Britain – all rights reserved

electronic papers

Acta Crystallographica Section C

Crystal Structure Communications

ISSN 0108-2701

2,4,6-Trimethylphenol

Burkhard Ziemer* and Oxana Surygina

Institut für Chemie, Humboldt-Universität zu Berlin, Hessische Straße 1-2, 10115 Berlin, Germany

Correspondence e-mail: burkhard=ziemer@chemie.hu-berlin.de

Received 14 September 2000 Accepted 28 September 2000

Data validation number: IUC0000278

Crystals of the title compound, $C_9H_{12}O$, were formed as an unexpected by-product during the recrystallization of (2R,3R)- $\alpha,\alpha,\alpha',\alpha'$ -tetramesityl-1,4-dioxaspiro[4,5]decane-2,3-dimethanol from hexane/ethyl acetate (7:3). Strong hydrogen bonds between hydroxide groups connect the molecules around one set of four symmetry-equivalent 2_1 axes.

Comment

Crystals of the title compound, (I), were formed as an unexpected by-product during the recrystallization of (2R,3R)- $\alpha,\alpha,\alpha',\alpha'$ -tetramesityl-1,4-dioxaspiro[4,5]decane-2,3-dimethanol, (II), from hexane/ethyl acetate (7:3). Therefore, (I) seems to be a decomposition product of (II). Strong hydrogen bonds between hydroxide groups [the donor-acceptor distance is 2.790 (2) Å] connect the molecules around one set of four symmetry-equivalent 2_1 axes, forming rod-shaped subunits in the structure of (I). There

are no hydrogen bonds related to the other set of 2_1 axes. Perpendicular to [010], there are only weak van der Waals interactions. The dominant hydrogen bonds may be the

reason for the very short b axis, which is in perfect accord with the concept of periodic bond-chain vectors (Hartmann & Perdock, 1955).

Experimental

Compound (II) was prepared as described in principle by Beck *et al.* (1991). Its decomposition to (I) occurs spontaneously in hexane/ethyl acetate.

Crystal data

$C_9H_{12}O$	$D_x = 1.155 \text{ Mg m}^{-3}$
$M_r = 136.19$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2000
a = 11.575 (3) Å	reflections
b = 4.3655 (6) Å	$\theta = 5.0–20.0^{\circ}$
c = 15.647 (4) Å	$\mu = 0.073 \text{ mm}^{-1}$
$\beta = 97.94 (3)^{\circ}$	T = 180 (2) K
$V = 783.1 (3) \text{Å}^3$	Prism, colourless
Z = 4	$0.60 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Stoe IPDS diffractometer	$R_{\rm int} = 0.028$
φ -rotation scans, φ -incr. = 1.5°, 153	$\theta_{\rm max} = 25.7^{\circ}$
exposures	$h = -14 \rightarrow 14$
4975 measured reflections	$k = -4 \rightarrow 4$
1412 independent reflections	$l = -19 \rightarrow 19$
1063 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0742P)^2]$
$wR(F^2) = 0.108$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.995	$(\Delta/\sigma)_{\text{max}} = 0.003$
1412 reflections	$\Delta \rho_{\text{max}} = 0.20 \text{ e Å}^{-3}$
139 parameters	$\Delta \rho_{\min} = -0.12 \text{ e Å}^{-3}$

Refined C-H distances were in the range 0.91 (3)–0.98 (3) \mathring{A} and the O1-H1Y distance was 0.89 (2) \mathring{A} .

Data collection: *IPDS*-2.87 (Stoe & Cie, 1997); cell refinement: *IPDS*-2.87; data reduction: *IPDS*-2.87; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

References

Beck, A. K., Bastani, B., Plattner, D. A., Petter, W., Seebach, D., Braunschweiger, H., Gyisi, P. & La Vecchia, L. (1991). Chimia, 45, 238–244.
Hartmann, P. & Perdock, W. G. (1955). Acta Cryst. 8, 49–52.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe & Cie (1997). IPDS-2.87. Stoe & Cie, Darmstadt, Germany.