Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

2,4,6-Trimethylphenol

Ziemer and Surygina

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

2,4,6-Trimethylphenol

Burkhard Ziemer* and Oxana Surygina

Institut für Chemie, Humboldt-Universität zu Berlin, Hessische Straße 1-2, 10115
Berlin, Germany
Correspondence e-mail: burkhard=ziemer@chemie.hu-berlin.de

Received 14 September 2000
Accepted 28 September 2000

Data validation number: IUC0000278
Crystals of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$, were formed as an unexpected by-product during the recrystallization of $(2 R, 3 R)-\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramesityl-1,4-dioxaspiro[4,5]decane-2,3dimethanol from hexane/ethyl acetate (7:3). Strong hydrogen bonds between hydroxide groups connect the molecules around one set of four symmetry-equivalent 2_{1} axes.

Comment

Crystals of the title compound, (I), were formed as an unexpected by-product during the recrystallization of $(2 R, 3 R)$ $\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramesityl-1,4-dioxaspiro[4,5]decane-2,3-dimethanol, (II), from hexane/ethyl acetate (7:3). Therefore, (I) seems to be a decomposition product of (II). Strong hydrogen bonds between hydroxide groups [the donoracceptor distance is $2.790(2) \AA$] connect the molecules around one set of four symmetry-equivalent 2_{1} axes, forming rod-shaped subunits in the structure of (I). There

(I)
are no hydrogen bonds related to the other set of 2_{1} axes. Perpendicular to [010], there are only weak van der Waals interactions. The dominant hydrogen bonds may be the
reason for the very short b axis, which is in perfect accord with the concept of periodic bond-chain vectors (Hartmann \& Perdock, 1955).

Experimental

Compound (II) was prepared as described in principle by Beck et al. (1991). Its decomposition to (I) occurs spontaneously in hexane/ethyl acetate.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}$
$M_{r}=136.19$
Monoclinic, $P 2_{1} / c$
$a=11.575$ (3) Å
$b=4.3655$ (6) A
$c=15.647(4) \AA$
$\beta=97.94$ (3) ${ }^{\circ}$
$V=783.1(3) \AA^{3}$
$Z=4$
$D_{x}=1.155 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2000 reflections
$\theta=5.0-20.0^{\circ}$
$\mu=0.073 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Prism, colourless
$0.60 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer
φ-rotation scans, φ-incr. $=1.5^{\circ}, 153$
\quad exposures
4975 measured reflections
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.7^{\circ}$
$h=-14 \rightarrow 14$
$k=-4 \rightarrow 4$
1412 independent reflections
$l=-19 \rightarrow 19$
1063 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.108$
$S=0.995$
1412 reflections 139 parameters

All H -atom parameters refined

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0742 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3
$$

$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$

Refined $\mathrm{C}-\mathrm{H}$ distances were in the range 0.91 (3) -0.98 (3) \AA and the $\mathrm{O} 1-\mathrm{H} 1 Y$ distance was 0.89 (2) \AA.

Data collection: IPDS-2.87 (Stoe \& Cie, 1997); cell refinement: IPDS-2.87; data reduction: IPDS-2.87; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

References

Beck, A. K., Bastani, B., Plattner, D. A., Petter, W., Seebach, D., Braunschweiger, H., Gyisi, P. \& La Vecchia, L. (1991). Chimia, 45, 238-244. Hartmann, P. \& Perdock, W. G. (1955). Acta Cryst. 8, 49-52.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (1997). IPDS-2.87. Stoe \& Cie, Darmstadt, Germany.

